
2648 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 11, NOVEMBER 2001

ISI-Free FIR Filterbank Transceivers for
Frequency-Selective Channels

Yuan-Pei Lin, Member, IEEE,and See-May Phoong, Member, IEEE

Abstract—Discrete multitone modulation transceivers (DMTs)
have been shown to be very useful for data transmission over
frequency selective channels. The DMT scheme is realized by a
transceiver that divides the channel into subbands. The efficiency
of the scheme depends on the frequency selectivity of the transmit-
ting and receiving filters. The receiving filters with good stopband
attenuation are also desired for combating narrowband noise.
The filterbank transceiver or discrete wavelet multitone (DWMT)
system has been proposed as an implementation of the DMT
transceiver that has better frequency band separation, but usually,
inrtersymbol interference (ISI) cannot be completely canceled
in these filterbank transceivers, and additional equalization is
required. In this paper, we show how to use over interpolated
filterbanks to design ISI-free FIR transceivers. A finite impulse
response (FIR) transceiver with good frequency selectivity can be
designed, as will be demonstrated by design examples.

I. INTRODUCTION

D ISCRETE multitone modulation (DMT) is now a widely
used technique for high-speed transmission over channels

such as digital subscriber loops [1]–[5]. In the DMT scheme,
the channel is divided into subbands, each with a different fre-
quency band. The transmission power and bits are judiciously
allocated according to the signal-to-noise ratio (SNR) in each
band [4]. This is similar to the water pouring scheme for dis-
crete transmission channels. The realization of the DMT scheme
relies on the design of a transceiver that effectively divides the
channel into subbands. Band separation is of particular impor-
tance when the SNR’s of different bands exhibit large differ-
ences. This can happen when the channel or the channel noise
is highly frequency selective or nonflat.

The DFT-based DMT system has been proposed as a prac-
tical implementation of DMT system [2], [5]. A certain redun-
dancy known as cyclic prefix is added to allow complete re-
moval of intersymbol interference (ISI). Very good transmission
rate can be accomplished using DFT-based DMT systems for
channels such as the asymmetric digital subscriber line (ADSL)
and the high bit rate digital subscriber line (HDSL). In the DFT-
based systems, the transmitting filters and receiving fil-
ters in Fig. 1 are DFT filters. The DFT filters have lim-
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ited frequency selectivity (stopband attenuation around 13 dB).
Narrowband noise could induce serious impairment due to poor
stopband [6]. The DFT-based systems fall into the category of
block-based DMT transceivers, where the transmitter and re-
ceiver consist of constant matrices. In this case, the filters have
length the interpolation ratio . The filter-length constraint
imposes limits on the stopband attenuation of the filter in the
block-based DMT transceivers.

For better band separation, Sandberg and Tzannes [7]
proposed the so-called discrete wavelet multitone (DWMT)
system, in which perfect reconstruction filter banks are used
as the transceiver. The transmitting and receiving filters have
excellent frequency separation property inherited from good fil-
terbank designs. Connection between an-band filterbank and
an -band transmultiplexer (an -band filterbank transceiver
or DWMT system) was first observed by Vetterli in [9]. When
the analysis and synthesis bank banks of a perfect reconstruc-
tion filterbank are interchanged, the new structure becomes a
transmultiplexer or a filterbank transceiver (see Fig. 1). The
DMWT system in this case has interpolation ratio ,
and it is calledminimally interpolated. When the transmission
channel is ideal, the minimally interpolated-subband filter-
bank transceiver is ISI free if the corresponding filterbank has
perfect reconstruction [8]. The ISI-free property means there
is no intra-subband and inter-subband ISI. However, when
the channel is not ideal, the perfect reconstruction property
of the filterbank no longer translates to an ISI-free property
of filterbank transceivers. Performance evaluation conducted
in [9] and [10] shows that the resulting ISI can seriously
degrade the system performance. To reduce the amount of ISI,
inter-subband and intra-subband equalization are performed on
the receiver outputs in [7]–[11].

When the interpolation ratio , the filterbank trans-
ceiver is calledover interpolated; in average every output
samples of the transmitter contains redundant sam-
ples. The cyclic prefix in DFT based DMT system is an example
of such redundant samples. Advances to the non block-based
FIR over interpolated system has been made in [12] and [13]
for ISI cancellation using precoding. The development is made
in the context of underdecimated filterbanks. It is shown therein
that we can use redundancy , except in pathological
cases. Fundamentals and many useful properties for over inter-
polated class are derived In [13]. The FIR DMT transceivers are
considered in a more general framework in [14]. Time-varying
systems are employed in designing FIR equalizers. Suppose the
channel is of order with distinct roots and that the interpo-
lation ratio and number of bands satisfy . It
is shown that [14] we can always find a channel-independent

1053–587X/01$10.00 © 2001 IEEE
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Fig. 1. M -subband filterbank transceiver over a fading channelP (z).

time-varying transmitter such that FIR time-varying receivers
exist. In particular, redundancy of one can be used as long as

and the time-varying receiving filters are sufficiently
long.

In many cases, the statistics of the channel noise is incorpo-
rated in the design. For example, in [15], Kasturiaet al.extend
the DFT-based transceiver to a more general vector coding
system. The transmitting filters or transmitting vectors are
eigenvectors of an appropriately defined channel matrix. When
the channel noise is AWGN, the vector coding is shown to be
optimal in terms of bit rate maximization subject to a trans-
mission power budget. Optimal DMT transceivers maximizing
the total SNR are designed in [14]. Bit rate maximization for
general noise sources is considered in [16] and [17]. Blind
equalization for block-based DMT transceivers are developed
in [18].

In this paper, we will develop design methods for ISI-free FIR
filterbank transceivers with effective band separation. We will
use overinterpolated filterbanks to introduce redundancy. The
introduced redundancy enables us to cancel ISIcompletely. Two
methods will be proposed for designing FIR transceivers with
zero ISI. They are based on two classes of FIR systems with FIR
inverses: the orthogonal matrices and unimodular matrices. For
a given channel, the filters are optimized subject to the condi-
tion that ISI be canceled. The noise statistics are not considered;
there is no need to estimate the noise spectrum. However, the ISI
cancellation property and the band separation property provided
by the transceivers facilitate the realization of the DMT scheme.
Examples will be given to demonstrate that the performance of
FIR filterbank transceivers is comparable to or better than that
of DFT-based DMT systems. The FIR filterbank transceivers
perform significantly better than the DFT-based system when
the noise is narrowband.

The sections are organized as follows. In Section II, a
polyphase framework of the filterbank transceiver is presented.
Using the framework, we show that the transmitting and re-
ceiving filters can be interchanged, and the ISI free property is
preserved. A class of FIR transceivers with an ISI-free property
is developed in Section III using the polyphase approach. The
development is based on FIR systems with FIR inverses. This
class will be used in Section IV for designing FIR transceivers.
Two types of FIR systems with FIR inverses are used: or-
thogonal matrices (Section IV-A) and unimodular matrices
(Section IV-B). Receivers with minimum mean squared error
for orthogonal transmitters are given in Section V.

Fig. 2. (a) Block diagram of the filterbank transceiver, including a discrete
time channel model and an equalizerT (z). (b) Block diagram of the filterbank
transceiver with an equalized channel model.

A. Notations and Preliminaries

• Boldfaced lower-case letters are used to represent vectors,
and boldfaced upper case letters are reserved for matrices.
The notations and represent the transpose of
and transpose-conjugate of.

• The notation denotes . For matrices with
real coefficients, .

• The function denotes the expected value of the
random variable .

• The notation is used to represent the identity
matrix. The subscript is omitted whenever the size is clear
from the context. The notation denotes the
reversal matrix. For example, a 3 3 reversal matrix is
given by

• Unimodular Matrices.An matrix is called
unimodular if , which is a constant [20]. A
causal unimodular FIR matrix has the property that

is also causal and FIR.

B. Channel Models

Fig. 2(a) shows the block diagram of a filterbank transceiver.
The discrete time channel is modeled as an LTI filter with
additive noise , as shown in Fig. 2(a). A time domain equal-
izer (TEQ) precedes the filterbank receiver. Typically, the
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Fig. 3. Polyphase representation of the transmitter and receiver in a filterbank transceiver.

filter can be further modeled as a rational transfer function
. The equalizer is usually designed to

cancel the poles of , and the resulting overall transfer func-
tion becomes the FIR filter , as shown in Fig. 2(b). Suppose

is of order and that

The equalized impulse response of the channel is thus shortened
to . Each input sample will be spread to a duration of length

as a result. The noise shown in Fig. 2(b) is obtained
by feeding the original noise to the equalizer . The
equalized channel model in Fig. 2(b) will be used throughout
this paper; the channel refers to the equalized channel, and
the channel noise refers to the noise at the equalizer output
in this paper.

II. POLYPHASE REPRESENTATION OFFILTERBANK

TRANSCEIVERS

Consider Fig. 1, where an -subband filterbank transceiver
is shown. The channel is represented by an FIR filter
with additive noise , as explained in Section I-B. The filters

and are called transmitting and receiving filters,
respectively. When , we say the system is over interpo-
lated and redundancy .

Using polyphase decomposition, we can decompose theth
transmitting filter with respect to the integer [20]

(1)

Writing the polyphase representation for all thetransmitting
filters, we have (2), shown at the bottom of the page, where

the matrix is the polyphase matrix of the trans-
mitter. Using the noble identity [20], we can interchange the ex-
pander and . The transmitter can be implemented using
its polyphase matrix, as shown in Fig. 3. In a similar manner,
we can decompose the receiving filters as

(3)

Then, by invoking the noble identity, the receiver can be redrawn
as Fig. 3. The receiving filters are related to the
polyphase matrix of the receiver as

...

...
...

. . .
...

...
(4)

A. Decomposition of the Channel

Using polyphase representation, we can decompose the
channel as

(5)

...
...

. . .
...

(2)
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Fig. 4. Polyphase identity.

In order to further simplify Fig. 3, we need to apply an identity
from the multirate theory. It is shown in [20] that the multirate
system in Fig. 4 is, in fact, equivalent to an LTI system with
transfer function given by

for
for

where is defined in (5). We see that the system
from to in Fig. 3 is in fact an LTI system with transfer
matrix given by (6), shown at the bottom of the page.
Matrices in the above form are known as pseudocirculant ma-
trices [20]. A first detailed study of pseudocirculant matrices
was made in [21]. Many useful properties, as well as applica-
tions of pseudocirculant matrices in QMF banks and block fil-
tering, are given therein.

Usually, the interpolation ratio is chosen to be larger than
the order of . In this case, the polyphases in (5)
are constants, and the last polyphases are zero. The
matrix is causal, and of order one

(7)

where

...
...

...

...
...

. . .
. . .

...

and

...
...

...
. . .

...

...
...

...
...

...

The matrices and are both and Toeplitz; is
lower triangular, and is upper triangular. Equivalently, the

Fig. 5. Polyphase representation of a filterbank transceiver.

matrix can be partitioned as an constant
matrix and an FIR causal matrix that is of
order 1

... (8)

Using the channel matrix , we can redraw Fig. 3 as
Fig. 5. As we will see later, the polyphase representation in
Fig. 5 will facilitate a systematic study of filterbank transceivers.

Zero ISI Condition: From the polyphase decomposition in
Fig. 5, we see that even though multirate building blocks are
used in a filterbank transceiver, it is in fact an LTI system with
inputs and outputs. The transfer matrix of the overall
system can be expressed as

(9)

The overall system is free from inter-subband ISI if is a
diagonal matrix. It is free from intra-subband ISI when the di-
agonal elements of are merely delays. If it is free from
both inter-subband and intra-subband ISI, we say that the filter-
bank transceiver is ISI free; in the absence of channel noise, the
outputs of an ISI-free filterbank transceiver are identical to the
inputs except delays and scalars. Without much loss of gener-
ality, we can use the ISI-free condition

(10)

B. Interchange of the Transmitting and Receiving Filters

Using the polyphase framework, we can immediately show
that the transmitting and receiving filters can be exchanged, and
ISI-free property is preserved. To see this, observe that the ma-
trix is Toeplitz, and it satisfies

(11)

...
...

...
. . .

...
(6)



2652 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 11, NOVEMBER 2001

where is the reversal matrix defined in Section I.
Taking transpose of the both sides of (9) and using (11), we have

(12)

From the above equation, we can conclude the following: If the
filterbank transceiver with and as the transmitter and
receiver, respectively, is ISI free, then the filterbank transceiver
with and as the transmitter and receiver, respec-
tively, will also be ISI free, where and are as given
in (12). Using the polyphase representation, the new transmit-
ting filters can be expressed as

Therefore, we have new transmitting filters .
Similarly, we can show that the new receiving filters

. We conclude that theISI-free property is preserved if we
interchange the transmitting and receiving filters.

Theorem 2.1:Suppose the transmitting filters and re-
ceiving filters in Fig. 1 form an ISI-free filterbank trans-
ceiver. Then, using as the transmitting filters and
as the receiving filters, the resulting filterbank transceiver is still
ISI free.

Remarks and Applications of Theorem 2.1:

1) The stopband attenuation of the receiving filters deter-
mine the receiver’s ability to reject out-of-band noise. If
the receiving filters have poor stopband attnuation, all the
neighboring bands will be affected when there is strong
narrowband noise. For example, in the DFT based DMT
system, the stopband attenuation of the receiving filters is
around 13 dB; the receiver cannot reject out-of-band noise
effectively. Therefore, in the DFT-based systems, there is
usually a design margin of around 6 dB. When the re-
ceiving filters have better frequency capability, a smaller
design margin can be used. In view of Theorem 2.1, we
can always choose the better one [from the two sets of fil-
ters and ] as the receiving filters.

2) On the other hand, it is desired that the transmitter have
smaller gain (for a fixed error probability and bit rate) so
that the energy needed in transmission is less. Therefore,
we can choose the filters with smaller 2-norm between
the two sets of and as the transmitter.

III. OVERINTERPOLATEDFILTERBANK TRANSCEIVERS

In an overinterpolated transceiver, there are more samples at
the output of the transmitter than the input. There are

redundant samples in every samples of the trans-
mitter output. If we allow the transmitting and receiving fil-
ters to be FIR with length longer than the interpolation ratio,
then the transmitter and receiver become transfer matrices

and . The systems are non block based. Consider the case
; the transmitter is in the form of trailing zeros

(13)

where is an matrix. Here, redundancy is in the
form of zero padding. Every input block of size goes through
an transfer matrix, and zeros are inserted between
every two blocks before transmission. In this case, the constant
matrix in (8) is of dimension and

The system is ISI free if

(14)

Thus, the channel-dependent term becomes a constant matrix
. For a given transmitter , the receiver can be

any left inverse for . The following lemma gives us
the condition for an FIR transceiver.

Lemma 3.1:Suppose the transmitter is given by (13). Then,
there exist FIR solutions for if and only if the inverse of

is FIR. In this case, the solution of the receiver is of the
form

(15)

where the matrix is any left inverse of .
Proof: Sufficiency. Pre-multiplying and

post-multiplying with both sides of (14), we get
. This means that is a left

inverse of . Therefore, we have

where is a left inverse of . Pre-multiplying of the
above equation with , we obtain the receiver in (15).
If is FIR, the receiver in (15) is also FIR. Further-
more, the solution of is not unique as is not unique.

Necessity.From (14), we see that is the left inverse
of . Therefore, for the FIR transceiver solutions, it is nec-
essary that has an FIR inverse.

From Lemma 3.1 we know that as long as is FIR and
it has an FIR inverse, we can obtain an ISI-free FIR transceiver.
Based on Lemma 3.1, we will design the FIR transceiver using
classes of FIR matrices that are known to have FIR inverses.

Left Inverses of : Suppose is a left inverse of . Let
be an matrix whose column vectors span the null space

of . Any left inverse of can be written as . Two
left inverses of can be found easily, as follows.

1) Pseudo Inverse.It is given by . This
was used in the block-based DMT system in [14] to obtain
ISI-free solutions.

2) It is mentioned in [18] that the matrix admits a left
inverse in the form of lower triangular Toeplitz. In fact,
such a left inverse can be found in closed form, as we see
next. Let , where denotes
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inverse transform. The filter can be unstable, de-
pending the zeros of . In particular, if does not
have minimum phase, then is not causal and stable.
Regardsless of whether the causal is stable or not,
we can use the first coefficients of to form an

lower triangular Toeplitz matrix

...
...

...
...

(16)

It can be verified that is a left inverse of .
Due to the Toeplitz nature of the left inverse in (16), it can
be implemented using the scalar filter . Note that the
memory of should be cleared for every input block of
length .

Remarks: The use of a zero padding transmitter means that
the last polyphases of the transmitting filters are zero,
but the receiver in (15) does not necessarily have some
polyphases equal to 0. Using the theorem in Section II, we can
exchange the transmitting filters and the receiving filters

. In this case, the redundancy no longer takes the form of
zero padding. The new receiving filters now havepolyphases
equal to 0. The matrix is of the form ,
where is an matrix; samples are discarded
from every input samples of the receiver.

Redundancy : It is shown in [17] that when the
system is block based, under some condition, we can use redun-
dancy , where the notation denotes the smallest
integer greater or equal to. We will see that the result holds
for non block-based systems as well. Suppose the redundancy
is and the transmitter is in the trailing zero
form

(17)

We partition the matrix in (8) as

(18)

where is of dimension , and is of dimen-
sion .

Lemma 3.2:We can use redundancy to obtain
FIR ISI-free transceivers if the matrix in (18) has full rank.

Proof: First, let us consider the case whereis even and
. Suppose the transmitter is as in (17) and that the

receiver is given by

where is an matrix. Then, the transceiver is ISI
free if

All three matrices in the above equation have dimensions
. Therefore, solutions for FIR and can be ob-

tained if is nonsingular or has full rank. The case thatis
odd can be verified in a similar way. In this case, has di-
mension , and the condition is that has full
rank.

Remark: In most of our experiments, the matrix has full
rank. The problem of conditioning the channel such that

has full rank is still open.

IV. DESIGN OFFIR ISI-FREEFILTERBANK TRANSCEIVERS

In Section III, we have seen that there always exist FIR
ISI-free transceivers when redundancy . In this case,
if zero padding is used at the transmitter, then the top matrix

of the transmitter can be any FIR matrix with an FIR
inverse. The design becomes a lot more tractable. It is known
that any causal FIR matrix with an FIR inverse can be factorized
as [22]

where is causal FIR orthogonal, and is causal FIR
unimodular. The class of FIR orthogonal matrices can be com-
pletely factorized into some basic building blocks [20]. There
are also classes of unimodular matrices that have been shown to
be very useful in filterbank designs [24]. We propose two design
methods for FIR filterbank transceivers with the ISI-free prop-
erty: One is based on FIR orthogonal matrices, and the other is
based on unimodular matrices.

A. Design Based on Orthogonal Matrices

In the context of filterbank theory and design, FIR orthogonal
matrices have been shown to be a very useful class. In this sec-
tion, we consider the case where is FIR and is
FIR orthogonal, i.e.,

Such a construction has the advantage that the receiver can be
simply chosen as . Furthermore, in the case
of AWGN noise source, the channel noise will not be amplified
by the receiver; the average receiver output noise power is the
same as the receiver input noise power. Observe that matrix
can be decomposed using singular value decomposition (SVD)

where and are, respectively, and or-
thogonal matrices. The matrix is diagonal and for

are the eigenvalues of , which are
nonzero as has full rank. It can be shown that if is
FIR and orthogonal, the matrix is necessarily of the form

(19)

where is an arbitrary FIR orthogonal matrix. Par-
tition as

(20)
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Then, the product assumes the form

In this case, the ISI-free property can be obtained by choosing
the receiver as

However, the above equation only gives one possible ISI-free
solution. To obtain all possible solutions, we note that the
ISI-free condition only requires that be a left inverse of

. As is of dimension , the receiver
is not unique. We can incorporate the left null space of

and choose

(21)

where is an arbitrary FIR transfer matrix. The
flexibility can be exploited to improve the frequency selectivity
of the receiving filters. It can also be used to minimize the total
output noise power, as we will see in Section V.

To maximize band separation, we minimize the stopband en-
ergy of the transmitting and receiving filters. The objective func-
tion is

(22)

where

Design Example 1—Design Using Orthogonal Matrices:The
channel to be used in the example is . The
order of is . We choose and . The
transmitter is as given in (13), and the receiver is as
given by (21). Using the factorization theorem of orthogonal
matrices, the orthogonal matrix can be parameterized
using degree-one building blocks [20]. We optimize and

to minimize the stopband energy of the receiving filters.
In the optimization, contains four degree-one building
blocks, and has the same order. Fig. 6 shows the
magnitude responses (in decibels) of the transmitting and
receiving filters. The stopband attenuation of the receiving
filters are around 19 dB. The magnitude response of is
also shown in Fig. 6(b) as a dotted line.

B. Design Based on Unimodular Matrices

The FIR unimodular matrices, unlike orthogonal matrices, do
not allow factorization in general. However, a particular class
of unimodular has been shown to be very useful in designing

-subband filter banks. Using polyphase matrices that belong
to this class, we can design analysis and synthesis filters with
sharp transition bands and good stopband attenuation. The uni-
modular matrices in this class can be written as a product of

Fig. 6. Design Example 1. Design Using Orthogonal Matrices.The magnitude
responses (in decibels) of (a) the transmitting filters and (b) the receiving filters.
The magnitude response of the channelP (e ) is also shown in (b) as a dotted
line.

lower triangular and upper triangular matrices of the following
form:

where the matrices and are, respectively, lower tri-
angular and upper triangular FIR matrices given by the equation
shown at the bottom of the next page, whereare constants,
and and are FIR filters. It can be immediately
verified that such a product matrix is a unimodular
matrix as and . Therefore,
its inverse is also FIR.

Consider the following choice of receiver and transmitter pair
that is based on the above class of unimodular matrices

and

(23)

where is an arbitrary FIR transfer matrix. The
receiving filters can be represented by

...
...
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where is the delay chain vector, as given above. Using the
partition of in (20), the above equation can be
rewritten as

...

Let

...

Then, we have , which is given by

...

where is the th row of . We can start the optimiza-
tion process by designing , , and the 0th row of
to obtain . As is already determined in the design
of , the filter is designed by optimizing ,

, , and . In a similar manner, we can continue on
to the optimization of , , , and .

Note that in the design based on orthogonal matrices, the re-
ceiving filters are optimized simultaneously. In addition, all the
transmitting filters have the same length, and all the receiving
filters have the same length. In the unimodular matrices-based
design, the filters are designed one by one. The filters that are
designed earlier will not be affected by the optimization of other
filters later. In this case, the filters can have different length. The
objective function is as in (22).

Design Example 2—Design Using Unimodular Matrices:
The LTI channel used in this example is the same as in Example
1: . The values of , , and are the same
as well, and , , and . The transmitter and

Fig. 7. Design Example 2. Design Using Unimodular Matrices.The
magnitude responses (in decibels) of (a) the transmitting filters and (b) the
receiving filters.

receiver are as given in (23). The matrices and are
of order 3. The resulting magnitude responses (in decibels) of
the transmitting and receiving filters are shown in Fig. 7. The
stopband attenuation of the receiving filters are around 22 dB.

Simulation Example:Consider the LTI channel in Design
Example 2. In this experiment, we will apply the transceiver
designed in Example 2 and compare the performance with that
of DFT-based DMT transceivers. The average number of bits
per output sample of the transmitter is bits. Two cases
of channel noise will be used: i) white noise with variance
0.0125 and ii) white noise plus narrowband noise with power
spectrum as shown in Fig. 8. The results for these two cases

...
...

...
. . .
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Fig. 8. Power spectrum of the channel noise for case ii). White noise plus
narrowband noise.

Fig. 9. Simulation Example.Bit error rate of filterbank transceiver and
DFT-based DMT transceiver for two cases of channel noise. (a) White noise
and (b) white noise plus narrowband noise with spectrum, as shown in Fig. 8.

of channel noise are shown, respectively, in Fig. 9(a) and (b).
In case i), the performance of the filterbank transceiver is
comparable with that of the DFT-based DMT system. In case
ii), where the noise is of a narrowband nature, the filterbank
transceiver achieves the same bit error rate with a much lower
signal-to-noise ratio.

V. MINIMUM MEAN SQUARED ERROR RECEIVERS FOR

ORTHOGONAL TRANSMITTERS

A. ISI-Free Transceivers with MMSE Receiver

In the design of FIR transceivers using zero padding in Sec-
tion III, the receiver solution is not unique for a given trans-
mitter. The flexibility can be used to minimize the output noise
power. Suppose the channel noise is a zero mean WSS
random process and that it is not correlated with the input. We
define the output noise power as

Fig. 10. MMSE receiver for ISI free filterbank transceivers.

Fig. 11. MMSE Wiener solution of the receiver.

where the function denotes the expected value of the
random variable . When the filterbank transceiver is ISI free,
the output noise comes entirely from the channel noise. Now,
we use the transmitter as given in (19), and we rewrite the
receiver in (21) as

(24)

The receiver is drawn in Fig. 10 for noise analysis. As
is orthogonal, the output noise power

. Suppose the order of is and
. Then

...
(25)

The minimization of becomes a linear estimation
problem: estimation of based on the observations

. By the orthogonality
principle, the optimal that minimizes is such
that , where is as indicated in (25).
Therefore, should be chosen so that

is satisfied. Note that when the noise is white, the vectors
and are uncorrelated for all and . In this case,

we have , and the optimal is the matrix.
When the order is , the order of the receiving filters is

increased by . To avoid increasing the order of the receiving
filters, we can choose to be a constant matrix . Then,
we have . The orthogonality principle
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requires that . Solving for , we obtain
optimal solution of

Using and , the above equa-
tion can be rewritten as

where is the autocorrelation matrix of the noise
.

B. Wiener Solution of the Receiver

The output noise power can be further reduced by adding a
Wiener matrix to the end of the receiver solution in (24). Con-
sider the receiver of the form

(26)

The receiver can be drawn as in Fig. 11. By the orthogonality
principle, the final output power noise is minimized if

i.e.,

Assuming that and the noise vector are uncorrelated,
which is usually true, we have

(27)

Therefore, the optimal is given by

Note that the above MMSE receiver solution gives us output
identical to the input in the absence of noise although the design
of the receiver itself depends on the noise statistics. The Wiener
solution in (26) does not yield an ISI-free transceiver in the ab-
sence of noise.
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